

A Teaching Affiliate of Harvard Medical School

CD47 Targeting in Peripheral T-cell Lymphomas

Salvia Jain, MD Assistant Professor of Medicine, Harvard Medical School Jon and Jo Ann Hagler Center for Lymphoma

1

Conflicts

Company	Nature		
Abcuro, Inc	SRA, SAB, Consultancy		
Acrotech Biopharma, Inc	SRA		
SIRPant Immunotherapeutics	SRA, SAB, Consultancy		
Daiichi Sankyo	SRA, SAB, Consultancy		
Myeloid Therapeutics	SRA, SAB, Consultancy		
Mersana Therapeutics	SRA, Consultancy		
CRISPR Therapeutics	SAB		

CD47-SIRPA: MYELOID IMMUNE CHECKPOINT

MASSACHUSETTS

GENERAL HOSPITAL

CANCER CENTER

MGH

- Antibodies that block the CD47:SIRPα interaction potently stimulate macrophage phagocytosis of cancer cells
- Collaboration with Surface Oncology: SRF231: human IgG4 anti-CD47 antibody
- 3

CD47 EXPRESSION IS HETEROGENEOUS IN TCL & NOT ASSOCIATED WITH WITH POOR OUTCOME

4

MASSACHUSETTS GENERAL HOSPITAL CANCER CENTER

Jain S, et al. Blood. 2019; 134(17): 1430-1440

CD47 ANTAGONISTS PROLONG SURVIVAL IN DIVERSE MODELS OF TCL

5

Jain S, et al. *Blood*. 2019; 134(17): 1430–1440

FC-FCYR INTERACTIONS ARE CRITICAL TO CD47 ANTAGONISTS

6

Jain S, et al. Blood. 2019; 134(17): 1430-1440

Antibody-dependent cellular phagocytosis

Antibody-dependent cellular cytotoxicity

Jain S, et al. Blood. 2019; 134(17): 1430-1440

A Phase 1b/2 Study of Hu5F9-G4 (Magrolimab) in Combination with Mogamulizumab in Relapsed/Refractory Treated T-Cell Lymphoma NCI Protocol # 10384

> Michael Khodadoust, MD PhD mkhodado@stanford.edu

Slide Courtesy: M. Khodadoust

CLINICAL DATA IN T-CELL LYMPHOMAS

	TTI-621 (hlgG1-Fc)	TTI-622 (hlgG4-Fc)	
Enrollment	Phase I (Completed)	Phase I	
Route of Administration	IV weekly	IV weekly	
Stage of Phase I	MTD: 0.2 mg/kg	Doses up to 12 mg/kg well tolerated and ongoing at 12 mg/kg	
CTCL	29 (MF=24 & SS=5)	3	
PTCL	12	3	
Median no of prior therapies	4 (1-18)	3 (1-9)	
Total Responses Evaluable (75) CTCL (29) PTCL (11)	1 CR (SS), 5 PR (MF) 0 CR, 2 PR, 3 SD	2 PR 1 PR	
≥ Grade 3 Frequent AEs Thrombocytopenia Anemia Neutropenia	20% 8% 8%	1% 4%	

Ansell SM, et al. Clin Cancer Res. 2021

1. Dissect immune responses in TCL upon CD47 blockade

2. Define signatures that mediate resistance

3. Develop strategies to overcome resistance

DISSECTING CD47-MEDIATED IMMUNE RESPONSES IN TRANSGENIC MODEL OF TCL AT SINGLE CELL LEVEL

Model: ITK-SYK transgenic murine model of T-cell lymphoma (Courtesy, Jurgen Ruland)

CyTOF Panel, scRNA-seq and TCR-seq: 43 marker lineage-defining, myeloid centric activation and exhaustion murine panel

Mice randomized to treatment in one of the 3 groups:

1) Unengrafted C57BL/6 treated with anti-CD47 mAb

2) ITK-SYK TCL mice treated with anti-CD47 mAb

3) ITK-SYK TCL mice treated with isotype control

Unpublished Data

Anti-CD47 mAbs Increase Classical Monocytes (Mo) and Monocyte-derived Macrophages (Mo-Mac) in TME

12

Anti-CD47 Antibodies Increase Neutrophils and Dendritic Cells in TME

0.6

0.4

0.2-

0.0

;=;

CTL MIAP410

p=0.06

Ŧ

- **ITK-SYK MOPC21**
- **ITK-SYK MIAP410**

MASSACHUSETTS

GENERAL HOSPITAL

CANCER CENTER

ھ MGH

Anti-CD47 mAbs Increase iNOS, CD1d and PD-L1 Expression in Monocytes and Monocyte-derived Macrophages in TME

iNOS expression across APC clusters at 2 weeks

CD1d expression across APC clusters at 2 weeks

PD-L1 expression across APC clusters at 2 weeks

CTL MIAP410
ITK-SYK MOPC21
ITK-SYK MIAP410

scRNA-seq and TCR-seq analysis is being completed

GENERATION OF ITK-SYK TRANSGENIC TUMORS RESISTANT TO CD47 ANTAGONISTS

Tx initiated after 10 weeks of injection

Tx initiated after 4 weeks of injection

A Teaching Affiliate of Harvard Medical School

Preclinical and Clinical Role of SIRPant-M[™] Macrophages in PTCL

(SIRPant Immunotherapeutics, Inc)

KLRG1 is a novel target in patients with mature T and NK/Tcell lymphomas

- There is a desperate need to develop novel immunotherapy for TCLs
- KLRG1
 - Co-inhibitory, immune checkpoint, expressed on differentiated T and NK cells
 - KLRG1 KO mice alone demonstrated a significant decrease in tumor growth in melanoma and breast cancer models
 - Abcuro, Inc has generated first-in-class afucosylated anti-human KLRG1 mAbs

Greenberg et al., Oncotarget, 2019, Tata et al., Oncolmmunology, 2021

Molecular Epidemiology of KLRG1 Across T-cell Lymphomas

CANCER CENTER

Certain subtypes express greater percentage of KLRG1+ tumor cells than others

Ubiquitous expression of KLRG1 in T-LGLL and CLPD-NK

KLRG1 expression in T-LGLL cells

KLRG1 expression in CLPD-NK cells

KLRG1 depleting mAbs selectively deplete KLRG1⁺ TCL cells and spare KLRG1⁻ naive and memory T cells

CANCER CENTER

20

A Teaching Affiliate of Harvard Medical School

Multicenter Phase I/II trial of ABC008 (anti-human KLRG1 mAb) in Subjects with T-LGLL launched

ABC008-LGL-101

ASH oral presentation Abstract #937: Monday 4.30-6

21

Incorporation of machine learning tools to predict survival & treatment outcomes for patients with R/R PTCL and NK/TCL: International Study

Leora S Boussi, MD, Min Jung Koh, MS, Xinyi Han, BS, Luke Peng, Min Ji Koh, BA, Ijeoma Eche, PhD, Josie Germain Ford, BS, Shambhavi Singh, MD, PhD, Eliana Miranda, MEd, PhD, Carlos S. Chiattone, MD, PhD, Carrie Van Der Weyden, MBBS (Hons), FRACP, FRCPA, Henry Miles Prince, MBBS (Hons), MD, FRACP, FRCPA, AFRCMA, MACD, FAHMS, Francine M. Foss, MD, Sang Eun Yoon, MD, Won-Seog Kim, MD, PhD, Girisha Panchoo, MBBS, Estelle Verburgh, MBChB, M Med Int, FCPSA, PhD, Jackielyn Cuenca Alturas, BA, Mubarak Al-mansour, MD, Martina Manni, PhD, Massimo Federico, MD, Maria Elena Cabrera, MD, Beatrice Casadei, MD, PhD, Pier Luigi Zinzani, MD, PhD, Noriaki Yoshida, MD, PhD, Takeshi Okatani, MD, Mwanasha H. Merrill, MD, Eric D Jacobsen, MD, Owen A. O'Connor, MD, PhD, Enrica Marchi, MD, PhD and Salvia Jain, MD

ASH presentation Abstract #4931: Monday 6-8 pm

Global Retrospective Cohort of R/R PTCL

- Retrospective cohort study with exhaustive treatment details for 1200 patients with R/R PTCL (650 enrolled)
- Participating countries: USA, Brazil, South Africa, Italy, Saudi Arabia, India, Australia, South Korea, and Japan
- □ Primary objective:
 - Compare single novel agents to chemotherapy
 - Utilize machine learning tools like synthetic intervention to estimate RR and survival

Survival analysis – Kaplan-Meier

Conventional chemo vs single agents

Per Calendar Period

Survival analysis: Cox regression, Random forest, Synthetic Intervention

HR (P value)	Univariate	Multivariate				
Treatment type (ref: single agent) Conventional chemotherapy Conventional chemotherapy plus single agent	1.20 (0.35) 0.55 (0.55)		1.18 (0.39) 0.51 (0.51)	1.04 (0.85) 0.62 (0.64)	1.02 (0.94) 0.57 (0.58)	1.12 (0.63) 0.71 (0.74)
Histological subtype (Ord: ALCL, ENKTL, AITL, PTCL-NOS, EATL, HSTCL, ATLL)#	1.16 (<0.005)	1.11 (0.03)	1.14 (0.01)		1.12 (0.03)	1.11 (0.04)
PIT score at diagnosis (Ord: 0, 1,2, ≥3) [#]	1.47 (<0.005)	1.49 (<0.005)	1.48 (<0.005)	1.50 (<0.005)	1.48 (<0.005)	1.48 (<0.005)
Country (ref: Australia) USA (Complete) Brazil South Korea South Africa Saudi Arabia Diagnosed period (ref: 2010-2015)	1.15 (0.64) 1.32 (0.33) 0.58 (0.12) 3.46 (0.23) 0.59 (0.48)					2.26 (0.03) 1.54 (0.17) 0.95 (0.89) 4.92 (0.13) 0.62 (0.53)
2016-2020 Response to 1 st treatment (Ord: Complete response, partial response, stable disease, progressive disease) [#]	1.00 (0.99) 1.26 (<0.005)	1.25 (<0.005)		1.27 (<0.005)	0.94 (0.74)	1.35 (0.31) 1.26 (<0.005
AIC		1317.28	1328.99	1323.73	1322.80	1321.87
Concordance index		0.69	0.62	0.68	0.68	0.69
ANDOM SURVIVAL FOREST ANALYSIS						
Concordance index		0.70	0.64	0.68	0.70	0.70

Synthetic Intervention predicts survival probability to various treatments with > 90% accuracy with as little as 20 patients

Acknowledgments

Mass General Brigham Mass General Cancer Center

Bimarzhan Assatova Abner Louissaint Jr Jessica Duffy Andrew Crabbe Jaffrey Barnes Patrick Johnson

David Weinstock Christopher Trevisani Foster Powers Lei Yang Tayla Heavican-Foral Eric Jacobsen Mwanasha Merrill Beth Israel Deaconess Medical Center

Robert Willim Leora Boussi Jessica Ziemba Brandy Pinckney Garrett Haskett Matthew Cotton

International Registry

BRIGHAM AND WOMEN'S HOSPITAL

Steven A. Greenberg Elizabeth A. Morgan Ian Brain

David Feith Thomas Loughran

Jessy Xinyi Han Devavrat Shah

Owen A. O'Connor Enrica Marchi Francine Foss Steven Horwitz Min Jung Koh Luke Peng Robert Stuver Miles Prince

Carrow Van Der Weyden

Won-Seog Kim San Eun Yoon Carlos Chaittone Eliana Miranda Estelle Verburgh Girisha Panchoo

Mubarak Al-Mansour

Jackielyn Alturaas

Jaehyuk Choi

Pier Luigi Zinzani Beatrice Casadei Lisa Argnani Martina Manni

Martina Manni Massimo Federico Maria Cabrera Manju Sengar Noriaki Yoshida Takeshi Okatani

Funding

NCI K08 Surface Oncology Abcuro, Inc Acrotech Biopharma, Inc Daiichi Sankyo MGH Lymphoma Research

Thank you team!!!!!

We are looking for graduate students and postdoctoral fellows and no one is left behind! salvia.jain@mgh.harvard.edu

